Polygraphs of finite derivation type
نویسندگان
چکیده
Craig Squier proved that, if a monoid can be presented by a finite convergent string rewriting system, then it satisfies the homological finiteness condition left-FP3. Using this result, he constructed finitely presentable monoids with a decidable word problem, but that cannot be presented by finite convergent rewriting systems. Later, he introduced the condition of finite derivation type, which is a homotopical finiteness property on the presentation complex associated to a monoid presentation. He showed that this condition is an invariant of finite presentations and he gave a constructive way to prove this finiteness property based on the computation of the critical branchings: being of finite derivation type is a necessary condition for a finitely presented monoid to admit a finite convergent presentation. This survey presents Squier’s results in the contemporary language of polygraphs and higher-dimensional categories, with new proofs and relations between them.
منابع مشابه
Higher-dimensional categories with finite derivation type
We study convergent (terminating and confluent) presentations of n-categories. Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for n-categories, generalising the one introduced by Squier for word rewriting systems. We characterise this property by using the notion of critical branching. In particular, we define sufficient conditions f...
متن کاملHigher-dimensional normalisation strategies for acyclicity
We introduce acyclic polygraphs, a notion of complete categorical cellular model for (small) categories, containing generators, relations and higher-dimensional globular syzygies. We give a rewriting method to construct explicit acyclic polygraphs from convergent presentations. For that, we introduce higher-dimensional normalisation strategies, defined as homotopically coherent ways to relate e...
متن کاملA Polygraphic Survey on Finiteness Conditions for Rewriting Systems
In 1987, Craig Squier proved that, if a monoid can be presented by a finite convergent string rewriting system, then it satisfies the homological finiteness condition left-FP3. Using this result, he has constructed finitely presented decidable monoids that cannot be presented by finite convergent rewriting systems. In 1994, Squier introduced the condition of finite derivation type, which is a h...
متن کاملIdentities among relations for higher-dimensional rewriting systems
We generalize the notion of identities among relations, well known for presentations of groups, to presentations of n-categories by polygraphs. To each polygraph, we associate a track n-category, generalizing the notion of crossed module for groups, in order to define the natural system of identities among relations. We relate the facts that this natural system is finitely generated and that th...
متن کاملTermination orders for 3-polygraphs
Polygraphs are cellular presentations of higher-dimensional categories introduced in [Burroni 1993]. They have been proved to generalize term rewriting systems but they lack some tools widely used in the field. This note presents a result developped in [Guiraud 2004] which fills this gap for some 3dimensional polygraphs: it introduces a method to craft termination orders, one of the most useful...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical Structures in Computer Science
دوره 28 شماره
صفحات -
تاریخ انتشار 2018